Source code for langchain.agents.openai_functions_multi_agent.base

"""Module implements an agent that uses OpenAI's APIs function enabled API."""

import json
from json import JSONDecodeError
from typing import Any, List, Optional, Sequence, Tuple, Union

from langchain_core._api import deprecated
from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish
from langchain_core.callbacks import BaseCallbackManager, Callbacks
from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    SystemMessage,
)
from langchain_core.prompts import BasePromptTemplate
from langchain_core.prompts.chat import (
    BaseMessagePromptTemplate,
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    MessagesPlaceholder,
)
from langchain_core.pydantic_v1 import root_validator
from langchain_core.tools import BaseTool

from langchain.agents import BaseMultiActionAgent
from langchain.agents.format_scratchpad.openai_functions import (
    format_to_openai_function_messages,
)

# For backwards compatibility
_FunctionsAgentAction = AgentActionMessageLog


def _parse_ai_message(message: BaseMessage) -> Union[List[AgentAction], AgentFinish]:
    """Parse an AI message."""
    if not isinstance(message, AIMessage):
        raise TypeError(f"Expected an AI message got {type(message)}")

    function_call = message.additional_kwargs.get("function_call", {})

    if function_call:
        try:
            arguments = json.loads(function_call["arguments"], strict=False)
        except JSONDecodeError:
            raise OutputParserException(
                f"Could not parse tool input: {function_call} because "
                f"the `arguments` is not valid JSON."
            )

        try:
            tools = arguments["actions"]
        except (TypeError, KeyError):
            raise OutputParserException(
                f"Could not parse tool input: {function_call} because "
                f"the `arguments` JSON does not contain `actions` key."
            )

        final_tools: List[AgentAction] = []
        for tool_schema in tools:
            if "action" in tool_schema:
                _tool_input = tool_schema["action"]
            else:
                # drop action_name from schema
                _tool_input = tool_schema.copy()
                del _tool_input["action_name"]
            function_name = tool_schema["action_name"]

            # HACK HACK HACK:
            # The code that encodes tool input into Open AI uses a special variable
            # name called `__arg1` to handle old style tools that do not expose a
            # schema and expect a single string argument as an input.
            # We unpack the argument here if it exists.
            # Open AI does not support passing in a JSON array as an argument.
            if "__arg1" in _tool_input:
                tool_input = _tool_input["__arg1"]
            else:
                tool_input = _tool_input

            content_msg = f"responded: {message.content}\n" if message.content else "\n"
            log = f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n"
            _tool = _FunctionsAgentAction(
                tool=function_name,
                tool_input=tool_input,
                log=log,
                message_log=[message],
            )
            final_tools.append(_tool)
        return final_tools

    return AgentFinish(
        return_values={"output": message.content}, log=str(message.content)
    )


[docs] @deprecated("0.1.0", alternative="create_openai_tools_agent", removal="0.3.0") class OpenAIMultiFunctionsAgent(BaseMultiActionAgent): """Agent driven by OpenAIs function powered API. Args: llm: This should be an instance of ChatOpenAI, specifically a model that supports using `functions`. tools: The tools this agent has access to. prompt: The prompt for this agent, should support agent_scratchpad as one of the variables. For an easy way to construct this prompt, use `OpenAIMultiFunctionsAgent.create_prompt(...)` """ llm: BaseLanguageModel tools: Sequence[BaseTool] prompt: BasePromptTemplate
[docs] def get_allowed_tools(self) -> List[str]: """Get allowed tools.""" return [t.name for t in self.tools]
@root_validator(pre=False, skip_on_failure=True) def validate_prompt(cls, values: dict) -> dict: prompt: BasePromptTemplate = values["prompt"] if "agent_scratchpad" not in prompt.input_variables: raise ValueError( "`agent_scratchpad` should be one of the variables in the prompt, " f"got {prompt.input_variables}" ) return values @property def input_keys(self) -> List[str]: """Get input keys. Input refers to user input here.""" return ["input"] @property def functions(self) -> List[dict]: """Get the functions for the agent.""" enum_vals = [t.name for t in self.tools] tool_selection = { # OpenAI functions returns a single tool invocation # Here we force the single tool invocation it returns to # itself be a list of tool invocations. We do this by constructing # a new tool that has one argument which is a list of tools # to use. "name": "tool_selection", "description": "A list of actions to take.", "parameters": { "title": "tool_selection", "description": "A list of actions to take.", "type": "object", "properties": { "actions": { "title": "actions", "type": "array", "items": { # This is a custom item which bundles the action_name # and the action. We do this because some actions # could have the same schema, and without this there # is no way to differentiate them. "title": "tool_call", "type": "object", "properties": { # This is the name of the action to take "action_name": { "title": "action_name", "enum": enum_vals, "type": "string", "description": ( "Name of the action to take. The name " "provided here should match up with the " "parameters for the action below." ), }, # This is the action to take. "action": { "title": "Action", "anyOf": [ { "title": t.name, "type": "object", "properties": t.args, } for t in self.tools ], }, }, "required": ["action_name", "action"], }, } }, "required": ["actions"], }, } return [tool_selection]
[docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations. callbacks: Callbacks to use. Default is None. **kwargs: User inputs. Returns: Action specifying what tool to use. """ agent_scratchpad = format_to_openai_function_messages(intermediate_steps) selected_inputs = { k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad" } full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad) prompt = self.prompt.format_prompt(**full_inputs) messages = prompt.to_messages() predicted_message = self.llm.predict_messages( messages, functions=self.functions, callbacks=callbacks ) agent_decision = _parse_ai_message(predicted_message) return agent_decision
[docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Async given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations. callbacks: Callbacks to use. Default is None. **kwargs: User inputs. Returns: Action specifying what tool to use. """ agent_scratchpad = format_to_openai_function_messages(intermediate_steps) selected_inputs = { k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad" } full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad) prompt = self.prompt.format_prompt(**full_inputs) messages = prompt.to_messages() predicted_message = await self.llm.apredict_messages( messages, functions=self.functions, callbacks=callbacks ) agent_decision = _parse_ai_message(predicted_message) return agent_decision
[docs] @classmethod def create_prompt( cls, system_message: Optional[SystemMessage] = SystemMessage( content="You are a helpful AI assistant." ), extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, ) -> BasePromptTemplate: """Create prompt for this agent. Args: system_message: Message to use as the system message that will be the first in the prompt. extra_prompt_messages: Prompt messages that will be placed between the system message and the new human input. Default is None. Returns: A prompt template to pass into this agent. """ _prompts = extra_prompt_messages or [] messages: List[Union[BaseMessagePromptTemplate, BaseMessage]] if system_message: messages = [system_message] else: messages = [] messages.extend( [ *_prompts, HumanMessagePromptTemplate.from_template("{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) return ChatPromptTemplate(messages=messages) # type: ignore[arg-type, call-arg]
[docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, system_message: Optional[SystemMessage] = SystemMessage( content="You are a helpful AI assistant." ), **kwargs: Any, ) -> BaseMultiActionAgent: """Construct an agent from an LLM and tools. Args: llm: The language model to use. tools: A list of tools to use. callback_manager: The callback manager to use. Default is None. extra_prompt_messages: Extra prompt messages to use. Default is None. system_message: The system message to use. Default is a default system message. kwargs: Additional arguments. """ prompt = cls.create_prompt( extra_prompt_messages=extra_prompt_messages, system_message=system_message, ) return cls( # type: ignore[call-arg] llm=llm, prompt=prompt, tools=tools, callback_manager=callback_manager, **kwargs, )