Source code for langchain.output_parsers.fix

from __future__ import annotations

from typing import Any, TypeVar, Union

from langchain_core.exceptions import OutputParserException
from langchain_core.output_parsers import BaseOutputParser, StrOutputParser
from langchain_core.prompts import BasePromptTemplate
from langchain_core.runnables import Runnable, RunnableSerializable
from typing_extensions import TypedDict

from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT

T = TypeVar("T")


[docs] class OutputFixingParserRetryChainInput(TypedDict, total=False): instructions: str completion: str error: str
[docs] class OutputFixingParser(BaseOutputParser[T]): """Wrap a parser and try to fix parsing errors.""" @classmethod def is_lc_serializable(cls) -> bool: return True parser: BaseOutputParser[T] """The parser to use to parse the output.""" # Should be an LLMChain but we want to avoid top-level imports from langchain.chains retry_chain: Union[ RunnableSerializable[OutputFixingParserRetryChainInput, str], Any ] """The RunnableSerializable to use to retry the completion (Legacy: LLMChain).""" max_retries: int = 1 """The maximum number of times to retry the parse.""" legacy: bool = True """Whether to use the run or arun method of the retry_chain."""
[docs] @classmethod def from_llm( cls, llm: Runnable, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_FIX_PROMPT, max_retries: int = 1, ) -> OutputFixingParser[T]: """Create an OutputFixingParser from a language model and a parser. Args: llm: llm to use for fixing parser: parser to use for parsing prompt: prompt to use for fixing max_retries: Maximum number of retries to parse. Returns: OutputFixingParser """ chain = prompt | llm | StrOutputParser() return cls(parser=parser, retry_chain=chain, max_retries=max_retries)
[docs] def parse(self, completion: str) -> T: retries = 0 while retries <= self.max_retries: try: return self.parser.parse(completion) except OutputParserException as e: if retries == self.max_retries: raise e else: retries += 1 if self.legacy and hasattr(self.retry_chain, "run"): completion = self.retry_chain.run( instructions=self.parser.get_format_instructions(), completion=completion, error=repr(e), ) else: try: completion = self.retry_chain.invoke( dict( instructions=self.parser.get_format_instructions(), completion=completion, error=repr(e), ) ) except (NotImplementedError, AttributeError): # Case: self.parser does not have get_format_instructions completion = self.retry_chain.invoke( dict( completion=completion, error=repr(e), ) ) raise OutputParserException("Failed to parse")
[docs] async def aparse(self, completion: str) -> T: retries = 0 while retries <= self.max_retries: try: return await self.parser.aparse(completion) except OutputParserException as e: if retries == self.max_retries: raise e else: retries += 1 if self.legacy and hasattr(self.retry_chain, "arun"): completion = await self.retry_chain.arun( instructions=self.parser.get_format_instructions(), completion=completion, error=repr(e), ) else: try: completion = await self.retry_chain.ainvoke( dict( instructions=self.parser.get_format_instructions(), completion=completion, error=repr(e), ) ) except (NotImplementedError, AttributeError): # Case: self.parser does not have get_format_instructions completion = await self.retry_chain.ainvoke( dict( completion=completion, error=repr(e), ) ) raise OutputParserException("Failed to parse")
[docs] def get_format_instructions(self) -> str: return self.parser.get_format_instructions()
@property def _type(self) -> str: return "output_fixing" @property def OutputType(self) -> type[T]: return self.parser.OutputType