Source code for langchain.retrievers.contextual_compression

from typing import Any, List

from langchain_core.callbacks import (
    AsyncCallbackManagerForRetrieverRun,
    CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever, RetrieverLike

from langchain.retrievers.document_compressors.base import (
    BaseDocumentCompressor,
)


[docs] class ContextualCompressionRetriever(BaseRetriever): """Retriever that wraps a base retriever and compresses the results.""" base_compressor: BaseDocumentCompressor """Compressor for compressing retrieved documents.""" base_retriever: RetrieverLike """Base Retriever to use for getting relevant documents.""" class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: Sequence of relevant documents """ docs = self.base_retriever.invoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = self.base_compressor.compress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) else: return [] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ docs = await self.base_retriever.ainvoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = await self.base_compressor.acompress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) else: return []