Source code for langchain.retrievers.document_compressors.chain_extract
"""DocumentFilter that uses an LLM chain to extract the relevant parts of documents."""
from __future__ import annotations
import asyncio
from typing import Any, Callable, Dict, Optional, Sequence, cast
from langchain_core.callbacks.manager import Callbacks
from langchain_core.documents import Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.retrievers.document_compressors.base import BaseDocumentCompressor
from langchain.retrievers.document_compressors.chain_extract_prompt import (
prompt_template,
)
[docs]
def default_get_input(query: str, doc: Document) -> Dict[str, Any]:
"""Return the compression chain input."""
return {"question": query, "context": doc.page_content}
[docs]
class NoOutputParser(BaseOutputParser[str]):
"""Parse outputs that could return a null string of some sort."""
no_output_str: str = "NO_OUTPUT"
[docs]
def parse(self, text: str) -> str:
cleaned_text = text.strip()
if cleaned_text == self.no_output_str:
return ""
return cleaned_text
def _get_default_chain_prompt() -> PromptTemplate:
output_parser = NoOutputParser()
template = prompt_template.format(no_output_str=output_parser.no_output_str)
return PromptTemplate(
template=template,
input_variables=["question", "context"],
output_parser=output_parser,
)
[docs]
class LLMChainExtractor(BaseDocumentCompressor):
"""Document compressor that uses an LLM chain to extract
the relevant parts of documents."""
llm_chain: LLMChain
"""LLM wrapper to use for compressing documents."""
get_input: Callable[[str, Document], dict] = default_get_input
"""Callable for constructing the chain input from the query and a Document."""
[docs]
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""Compress page content of raw documents."""
compressed_docs = []
for doc in documents:
_input = self.get_input(query, doc)
output_dict = self.llm_chain.invoke(_input, config={"callbacks": callbacks})
output = output_dict[self.llm_chain.output_key]
if self.llm_chain.prompt.output_parser is not None:
output = self.llm_chain.prompt.output_parser.parse(output)
if len(output) == 0:
continue
compressed_docs.append(
Document(page_content=cast(str, output), metadata=doc.metadata)
)
return compressed_docs
[docs]
async def acompress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""Compress page content of raw documents asynchronously."""
outputs = await asyncio.gather(
*[
self.llm_chain.apredict_and_parse(
**self.get_input(query, doc), callbacks=callbacks
)
for doc in documents
]
)
compressed_docs = []
for i, doc in enumerate(documents):
if len(outputs[i]) == 0:
continue
compressed_docs.append(
Document(page_content=outputs[i], metadata=doc.metadata) # type: ignore[arg-type]
)
return compressed_docs
[docs]
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: Optional[PromptTemplate] = None,
get_input: Optional[Callable[[str, Document], str]] = None,
llm_chain_kwargs: Optional[dict] = None,
) -> LLMChainExtractor:
"""Initialize from LLM."""
_prompt = prompt if prompt is not None else _get_default_chain_prompt()
_get_input = get_input if get_input is not None else default_get_input
llm_chain = LLMChain(llm=llm, prompt=_prompt, **(llm_chain_kwargs or {}))
return cls(llm_chain=llm_chain, get_input=_get_input) # type: ignore[arg-type]