Source code for langchain_google_community.vertex_ai_search

"""Retriever wrapper for Google Vertex AI Search.

Set the following environment variables before the tests:
export PROJECT_ID=... - set to your Google Cloud project ID
export DATA_STORE_ID=... - the ID of the search engine to use for the test
"""

from __future__ import annotations

import json
import warnings
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence

from google.api_core.client_options import ClientOptions
from google.api_core.exceptions import InvalidArgument
from google.protobuf.json_format import MessageToDict
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.load import Serializable, load
from langchain_core.pydantic_v1 import Extra, Field, root_validator
from langchain_core.retrievers import BaseRetriever
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env

from langchain_google_community._utils import get_client_info

if TYPE_CHECKING:
    from google.cloud.discoveryengine_v1beta import (  # type: ignore[import, attr-defined]
        ConversationalSearchServiceClient,
        SearchRequest,
        SearchResult,
        SearchServiceClient,
    )


def _load(dump: Dict[str, Any]) -> Any:
    return load(dump, valid_namespaces=["langchain_google_community"])


class _BaseVertexAISearchRetriever(Serializable):
    project_id: str
    """Google Cloud Project ID."""
    data_store_id: str
    """Vertex AI Search data store ID."""
    location_id: str = "global"
    """Vertex AI Search data store location."""
    serving_config_id: str = "default_config"
    """Vertex AI Search serving config ID."""
    credentials: Any = None
    """The default custom credentials (google.auth.credentials.Credentials) to use
    when making API calls. If not provided, credentials will be ascertained from
    the environment."""
    engine_data_type: int = Field(default=0, ge=0, le=2)
    """ Defines the Vertex AI Search data type
    0 - Unstructured data 
    1 - Structured data
    2 - Website data
    """

    @classmethod
    def is_lc_serializable(self) -> bool:
        return True

    def __reduce__(self) -> Any:
        return _load, (self.to_json(),)

    @root_validator(pre=True)
    def validate_environment(cls, values: Dict) -> Dict:
        """Validates the environment."""
        try:
            from google.cloud import discoveryengine_v1beta  # noqa: F401
        except ImportError as exc:
            raise ImportError(
                "Could not import google-cloud-discoveryengine python package. "
                "Please, install vertexaisearch dependency group: "
                "poetry install --with vertexaisearch"
            ) from exc

        values["project_id"] = get_from_dict_or_env(values, "project_id", "PROJECT_ID")

        try:
            # For backwards compatibility
            search_engine_id = get_from_dict_or_env(
                values, "search_engine_id", "SEARCH_ENGINE_ID"
            )

            if search_engine_id:
                warnings.warn(
                    "The `search_engine_id` parameter is deprecated. Use `data_store_id` instead.",  # noqa: E501
                    DeprecationWarning,
                )
                values["data_store_id"] = search_engine_id
        except:  # noqa: E722
            pass

        values["data_store_id"] = get_from_dict_or_env(
            values, "data_store_id", "DATA_STORE_ID"
        )

        return values

    @property
    def client_options(self) -> "ClientOptions":
        return ClientOptions(
            api_endpoint=(
                f"{self.location_id}-discoveryengine.googleapis.com"
                if self.location_id != "global"
                else None
            )
        )

    def _convert_structured_search_response(
        self, results: Sequence[SearchResult]
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        documents: List[Document] = []

        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )

            documents.append(
                Document(
                    page_content=json.dumps(document_dict.get("struct_data", {})),
                    metadata={"id": document_dict["id"], "name": document_dict["name"]},
                )
            )

        return documents

    def _convert_unstructured_search_response(
        self, results: Sequence[SearchResult], chunk_type: str
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        documents: List[Document] = []

        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )
            derived_struct_data = document_dict.get("derived_struct_data")
            if not derived_struct_data:
                continue

            doc_metadata = document_dict.get("struct_data", {})
            doc_metadata["id"] = document_dict["id"]

            if chunk_type not in derived_struct_data:
                continue

            for chunk in derived_struct_data[chunk_type]:
                chunk_metadata = doc_metadata.copy()
                chunk_metadata["source"] = derived_struct_data.get("link", "")

                if (
                    chunk_type == "extractive_answers"
                    or chunk_type == "extractive_segments"
                ):
                    chunk_metadata["source"] += f":{chunk.get('pageNumber', '')}"
                documents.append(
                    Document(
                        page_content=chunk.get("content", ""), metadata=chunk_metadata
                    )
                )

        return documents

    def _convert_website_search_response(
        self, results: Sequence[SearchResult], chunk_type: str
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        documents: List[Document] = []

        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )
            derived_struct_data = document_dict.get("derived_struct_data")
            if not derived_struct_data:
                continue

            doc_metadata = document_dict.get("struct_data", {})
            doc_metadata["id"] = document_dict["id"]
            doc_metadata["source"] = derived_struct_data.get("link", "")

            if chunk_type not in derived_struct_data:
                continue

            text_field = "snippet" if chunk_type == "snippets" else "content"

            for chunk in derived_struct_data[chunk_type]:
                documents.append(
                    Document(
                        page_content=chunk.get(text_field, ""), metadata=doc_metadata
                    )
                )

        if not documents:
            print(f"No {chunk_type} could be found.")  # noqa: T201
            if chunk_type == "extractive_answers":
                print(  # noqa: T201
                    "Make sure that your data store is using Advanced Website "
                    "Indexing.\n"
                    "https://cloud.google.com/generative-ai-app-builder/docs/about-advanced-features#advanced-website-indexing"  # noqa: E501
                )

        return documents


[docs] class VertexAISearchRetriever(BaseRetriever, _BaseVertexAISearchRetriever): """`Google Vertex AI Search` retriever. For a detailed explanation of the Vertex AI Search concepts and configuration parameters, refer to the product documentation. https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction """ filter: Optional[str] = None """Filter expression.""" get_extractive_answers: bool = False """If True return Extractive Answers, otherwise return Extractive Segments or Snippets.""" # noqa: E501 max_documents: int = Field(default=5, ge=1, le=100) """The maximum number of documents to return.""" max_extractive_answer_count: int = Field(default=1, ge=1, le=5) """The maximum number of extractive answers returned in each search result. At most 5 answers will be returned for each SearchResult. """ max_extractive_segment_count: int = Field(default=1, ge=1, le=1) """The maximum number of extractive segments returned in each search result. Currently one segment will be returned for each SearchResult. """ query_expansion_condition: int = Field(default=1, ge=0, le=2) """Specification to determine under which conditions query expansion should occur. 0 - Unspecified query expansion condition. In this case, server behavior defaults to disabled 1 - Disabled query expansion. Only the exact search query is used, even if SearchResponse.total_size is zero. 2 - Automatic query expansion built by the Search API. """ spell_correction_mode: int = Field(default=2, ge=0, le=2) """Specification to determine under which conditions query expansion should occur. 0 - Unspecified spell correction mode. In this case, server behavior defaults to auto. 1 - Suggestion only. Search API will try to find a spell suggestion if there is any and put in the `SearchResponse.corrected_query`. The spell suggestion will not be used as the search query. 2 - Automatic spell correction built by the Search API. Search will be based on the corrected query if found. """ boost_spec: Optional[Dict[Any, Any]] = None """BoostSpec for boosting search results. A protobuf should be provided. https://cloud.google.com/generative-ai-app-builder/docs/boost-search-results https://cloud.google.com/generative-ai-app-builder/docs/reference/rest/v1beta/BoostSpec """ _client: SearchServiceClient _serving_config: str class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True underscore_attrs_are_private = True def __init__(self, **kwargs: Any) -> None: """Initializes private fields.""" try: from google.cloud.discoveryengine_v1beta import SearchServiceClient except ImportError as exc: raise ImportError( "Could not import google-cloud-discoveryengine python package. " "Please, install vertexaisearch dependency group: " "`pip install langchain-google-community[vertexaisearch]`" ) from exc try: super().__init__(**kwargs) except ValueError as e: print(f"Error initializing GoogleVertexAISearchRetriever: {str(e)}") raise # For more information, refer to: # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store self._client = SearchServiceClient( credentials=self.credentials, client_options=self.client_options, client_info=get_client_info(module="vertex-ai-search"), ) self._serving_config = self._client.serving_config_path( project=self.project_id, location=self.location_id, data_store=self.data_store_id, serving_config=self.serving_config_id, ) def _get_content_spec_kwargs(self) -> Optional[Dict[str, Any]]: """Prepares a ContentSpec object.""" from google.cloud.discoveryengine_v1beta import SearchRequest if self.engine_data_type == 0: if self.get_extractive_answers: extractive_content_spec = ( SearchRequest.ContentSearchSpec.ExtractiveContentSpec( max_extractive_answer_count=self.max_extractive_answer_count, ) ) else: extractive_content_spec = ( SearchRequest.ContentSearchSpec.ExtractiveContentSpec( max_extractive_segment_count=self.max_extractive_segment_count, ) ) content_search_spec = dict(extractive_content_spec=extractive_content_spec) elif self.engine_data_type == 1: content_search_spec = None elif self.engine_data_type == 2: content_search_spec = dict( extractive_content_spec=SearchRequest.ContentSearchSpec.ExtractiveContentSpec( max_extractive_answer_count=self.max_extractive_answer_count, ), snippet_spec=SearchRequest.ContentSearchSpec.SnippetSpec( return_snippet=True ), ) else: raise NotImplementedError( "Only data store type 0 (Unstructured), 1 (Structured)," "or 2 (Website) are supported currently." + f" Got {self.engine_data_type}" ) return content_search_spec def _create_search_request(self, query: str) -> SearchRequest: """Prepares a SearchRequest object.""" from google.cloud.discoveryengine_v1beta import SearchRequest query_expansion_spec = SearchRequest.QueryExpansionSpec( condition=self.query_expansion_condition, ) spell_correction_spec = SearchRequest.SpellCorrectionSpec( mode=self.spell_correction_mode ) content_search_spec_kwargs = self._get_content_spec_kwargs() if content_search_spec_kwargs is not None: content_search_spec = SearchRequest.ContentSearchSpec( **content_search_spec_kwargs ) else: content_search_spec = None return SearchRequest( query=query, filter=self.filter, serving_config=self._serving_config, page_size=self.max_documents, content_search_spec=content_search_spec, query_expansion_spec=query_expansion_spec, spell_correction_spec=spell_correction_spec, boost_spec=SearchRequest.BoostSpec(**self.boost_spec) if self.boost_spec else None, ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" search_request = self._create_search_request(query) try: response = self._client.search(search_request) except InvalidArgument as exc: raise type(exc)( exc.message + " This might be due to engine_data_type not set correctly." ) if self.engine_data_type == 0: chunk_type = ( "extractive_answers" if self.get_extractive_answers else "extractive_segments" ) documents = self._convert_unstructured_search_response( response.results, chunk_type ) elif self.engine_data_type == 1: documents = self._convert_structured_search_response(response.results) elif self.engine_data_type == 2: chunk_type = ( "extractive_answers" if self.get_extractive_answers else "snippets" ) documents = self._convert_website_search_response( response.results, chunk_type ) else: raise NotImplementedError( "Only data store type 0 (Unstructured), 1 (Structured)," "or 2 (Website) are supported currently." + f" Got {self.engine_data_type}" ) return documents
[docs] class VertexAIMultiTurnSearchRetriever(BaseRetriever, _BaseVertexAISearchRetriever): """`Google Vertex AI Search` retriever for multi-turn conversations.""" conversation_id: str = "-" """Vertex AI Search Conversation ID.""" _client: ConversationalSearchServiceClient _serving_config: str class Config: """Configuration for this pydantic object.""" extra = Extra.ignore arbitrary_types_allowed = True underscore_attrs_are_private = True def __init__(self, **kwargs: Any): super().__init__(**kwargs) from google.cloud.discoveryengine_v1beta import ( ConversationalSearchServiceClient, ) self._client = ConversationalSearchServiceClient( credentials=self.credentials, client_options=self.client_options, client_info=get_client_info(module="vertex-ai-search"), ) self._serving_config = self._client.serving_config_path( project=self.project_id, location=self.location_id, data_store=self.data_store_id, serving_config=self.serving_config_id, ) if self.engine_data_type == 1: raise NotImplementedError( "Data store type 1 (Structured)" "is not currently supported for multi-turn search." + f" Got {self.engine_data_type}" ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" from google.cloud.discoveryengine_v1beta import ( ConverseConversationRequest, TextInput, ) request = ConverseConversationRequest( name=self._client.conversation_path( self.project_id, self.location_id, self.data_store_id, self.conversation_id, ), serving_config=self._serving_config, query=TextInput(input=query), ) response = self._client.converse_conversation(request) if self.engine_data_type == 2: return self._convert_website_search_response( response.search_results, "extractive_answers" ) return self._convert_unstructured_search_response( response.search_results, "extractive_answers" )
[docs] class VertexAISearchSummaryTool(BaseTool, VertexAISearchRetriever): """Class that exposes a tool to interface with an App in Vertex Search and Conversation and get the summary of the documents retrieved. """ summary_prompt: Optional[str] = None """Prompt for the summarization agent""" summary_result_count: int = 3 """ Number of documents to include in the summary""" summary_include_citations: bool = True """ Whether to include citations in the summary """ summary_spec_kwargs: Dict[str, Any] = Field(default_factory=dict) """ Additional kwargs for `SearchRequest.ContentSearchSpec.SummarySpec`""" class Config(VertexAISearchRetriever.Config): """Redefinition to specify that inherits config from `VertexAISearchRetriever` not BaseTool """ def _get_content_spec_kwargs(self) -> Optional[Dict[str, Any]]: """Adds additional summary_spec parameters to the configuration of the search. Returns: kwargs for the specification of the content. """ from google.cloud.discoveryengine_v1beta import SearchRequest kwargs = super()._get_content_spec_kwargs() or {} kwargs["summary_spec"] = SearchRequest.ContentSearchSpec.SummarySpec( summary_result_count=self.summary_result_count, include_citations=self.summary_include_citations, model_prompt_spec=SearchRequest.ContentSearchSpec.SummarySpec.ModelPromptSpec( preamble=self.summary_prompt ), **self.summary_spec_kwargs, ) return kwargs def _run(self, user_query: str) -> str: """Runs the tool. Args: search_query: The query to run by the agent. Returns: The response from the agent. """ request = self._create_search_request(user_query) response = self._client.search(request) return response.summary.summary_text