AI21SemanticTextSplitter#
- class langchain_ai21.semantic_text_splitter.AI21SemanticTextSplitter(chunk_size: int = 0, chunk_overlap: int = 0, client: Any | None = None, api_key: SecretStr | None = None, api_host: str | None = None, timeout_sec: float | None = None, num_retries: int | None = None, **kwargs: Any)[source]#
Splitting text into coherent and readable units, based on distinct topics and lines.
Create a new TextSplitter.
Methods
__init__
([chunk_size, chunk_overlap, ...])Create a new TextSplitter.
atransform_documents
(documents, **kwargs)Asynchronously transform a list of documents.
create_documents
(texts[, metadatas])Create documents from a list of texts.
from_huggingface_tokenizer
(tokenizer, **kwargs)Text splitter that uses HuggingFace tokenizer to count length.
from_tiktoken_encoder
([encoding_name, ...])Text splitter that uses tiktoken encoder to count length.
split_documents
(documents)Split documents.
split_text
(source)Split text into multiple components.
split_text_to_documents
(source)Split text into multiple documents.
transform_documents
(documents, **kwargs)Transform sequence of documents by splitting them.
- Parameters:
chunk_size (int)
chunk_overlap (int)
client (Any | None)
api_key (SecretStr | None)
api_host (str | None)
timeout_sec (float | None)
num_retries (int | None)
kwargs (Any)
- __init__(chunk_size: int = 0, chunk_overlap: int = 0, client: Any | None = None, api_key: SecretStr | None = None, api_host: str | None = None, timeout_sec: float | None = None, num_retries: int | None = None, **kwargs: Any) None [source]#
Create a new TextSplitter.
- Parameters:
chunk_size (int)
chunk_overlap (int)
client (Any | None)
api_key (SecretStr | None)
api_host (str | None)
timeout_sec (float | None)
num_retries (int | None)
kwargs (Any)
- Return type:
None
- async atransform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document] #
Asynchronously transform a list of documents.
- create_documents(texts: List[str], metadatas: List[dict] | None = None) List[Document] [source]#
Create documents from a list of texts.
- Parameters:
texts (List[str])
metadatas (List[dict] | None)
- Return type:
List[Document]
- classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) TextSplitter #
Text splitter that uses HuggingFace tokenizer to count length.
- Parameters:
tokenizer (Any)
kwargs (Any)
- Return type:
- classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: str | None = None, allowed_special: Literal['all'] | AbstractSet[str] = {}, disallowed_special: Literal['all'] | Collection[str] = 'all', **kwargs: Any) TS #
Text splitter that uses tiktoken encoder to count length.
- Parameters:
encoding_name (str)
model_name (str | None)
allowed_special (Literal['all'] | ~typing.AbstractSet[str])
disallowed_special (Literal['all'] | ~typing.Collection[str])
kwargs (Any)
- Return type:
TS
- split_text(source: str) List[str] [source]#
Split text into multiple components.
- Parameters:
source (str) – Specifies the text input for text segmentation
- Return type:
List[str]