DeterministicFakeEmbedding#
- class langchain_core.embeddings.fake.DeterministicFakeEmbedding[source]#
Bases:
Embeddings
,BaseModel
Deterministic fake embedding model for unit testing purposes.
This embedding model creates embeddings by sampling from a normal distribution with a seed based on the hash of the text.
Do not use this outside of testing, as it is not a real embedding model.
Example
from langchain_core.embeddings import DeterministicFakeEmbedding fake_embeddings = DeterministicFakeEmbedding(size=100) fake_embeddings.embed_documents(["hello world", "foo bar"])
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param size: int [Required]#
The size of the embedding vector.
- async aembed_documents(texts: List[str]) List[List[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (List[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
List[float]