create_extraction_chain_pydantic#
- langchain.chains.openai_functions.extraction.create_extraction_chain_pydantic(pydantic_schema: Any, llm: BaseLanguageModel, prompt: BasePromptTemplate | None = None, verbose: bool = False) Chain [source]#
Deprecated since version 0.1.14: LangChain has introduced a method called with_structured_output thatis available on ChatModels capable of tool calling.You can read more about the method here: <https://python.langchain.com/docs/modules/model_io/chat/structured_output/>. Please follow our extraction use case documentation for more guidelineson how to do information extraction with LLMs.<https://python.langchain.com/docs/use_cases/extraction/>. If you notice other issues, please provide feedback here:<langchain-ai/langchain#18154> Use `` from langchain_core.pydantic_v1 import BaseModel, Field from langchain_anthropic import ChatAnthropic
- class Joke(BaseModel):
setup: str = Field(description=”The setup of the joke”) punchline: str = Field(description=”The punchline to the joke”)
# Or any other chat model that supports tools. # Please reference to to the documentation of structured_output # to see an up to date list of which models support # with_structured_output. model = ChatAnthropic(model=”claude-3-opus-20240229”, temperature=0) structured_llm = model.with_structured_output(Joke) structured_llm.invoke(“Tell me a joke about cats.
Make sure to call the Joke function.”)
`` instead.
Creates a chain that extracts information from a passage using pydantic schema.
- Parameters:
pydantic_schema (Any) – The pydantic schema of the entities to extract.
llm (BaseLanguageModel) – The language model to use.
prompt (BasePromptTemplate | None) – The prompt to use for extraction.
verbose (bool) – Whether to run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to the global verbose value, accessible via langchain.globals.get_verbose()
- Returns:
Chain that can be used to extract information from a passage.
- Return type: