ConversationTokenBufferMemory#

class langchain.memory.token_buffer.ConversationTokenBufferMemory[source]#

Bases: BaseChatMemory

Conversation chat memory with token limit.

param ai_prefix: str = 'AI'#
param chat_memory: BaseChatMessageHistory [Optional]#
param human_prefix: str = 'Human'#
param input_key: str | None = None#
param llm: BaseLanguageModel [Required]#
param max_token_limit: int = 2000#
param memory_key: str = 'history'#
param output_key: str | None = None#
param return_messages: bool = False#
async aclear() None#

Clear memory contents.

Return type:

None

async aload_memory_variables(inputs: Dict[str, Any]) Dict[str, Any]#

Async return key-value pairs given the text input to the chain.

Parameters:

inputs (Dict[str, Any]) – The inputs to the chain.

Returns:

A dictionary of key-value pairs.

Return type:

Dict[str, Any]

async asave_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None#

Save context from this conversation to buffer.

Parameters:
  • inputs (Dict[str, Any])

  • outputs (Dict[str, str])

Return type:

None

clear() None#

Clear memory contents.

Return type:

None

load_memory_variables(inputs: Dict[str, Any]) Dict[str, Any][source]#

Return history buffer.

Parameters:

inputs (Dict[str, Any])

Return type:

Dict[str, Any]

save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None[source]#

Save context from this conversation to buffer. Pruned.

Parameters:
  • inputs (Dict[str, Any])

  • outputs (Dict[str, str])

Return type:

None

property buffer: Any#

String buffer of memory.

property buffer_as_messages: List[BaseMessage]#

Exposes the buffer as a list of messages in case return_messages is True.

property buffer_as_str: str#

Exposes the buffer as a string in case return_messages is False.