MistralAIEmbeddings#
- class langchain_mistralai.embeddings.MistralAIEmbeddings[source]#
Bases:
BaseModel
,Embeddings
MistralAI embedding models.
To use, set the environment variable MISTRAL_API_KEY is set with your API key or pass it as a named parameter to the constructor.
Example
from langchain_mistralai import MistralAIEmbeddings mistral = MistralAIEmbeddings( model="mistral-embed", api_key="my-api-key" )
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param endpoint: str = 'https://api.mistral.ai/v1/'#
- param max_concurrent_requests: int = 64#
- param max_retries: int = 5#
- param mistral_api_key: SecretStr | None = None (alias 'api_key')#
- Constraints:
type = string
writeOnly = True
format = password
- param model: str = 'mistral-embed'#
- param timeout: int = 120#
- param tokenizer: Tokenizer = None#
- async aembed_documents(texts: List[str]) List[List[float]] [source]#
Embed a list of document texts.
- Parameters:
texts (List[str]) – The list of texts to embed.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] [source]#
Embed a single query text.
- Parameters:
text (str) – The text to embed.
- Returns:
Embedding for the text.
- Return type:
List[float]